

Course Outline for: PHYS 1110 College Physics 1

A. Course Description:

1. Number of credits: 4

2. Lecture hours per week: 3

Lab hours per week: 2

3. Prerequisites: MATH 1100 (C- or better); OR

Concurrent registration with an override; OR

Eligible for MATH 1100 (C- or better, valid for 5 years); OR

MATH 1150 (C- or better, valid for 5 years); OR Placement Level of Math 1150/1400/1500:

High School GPA of 2.80-3.29 and passed Pre-Calculus or a

higher-level math course; OR ACT Math Sub-Score of 22+; OR

Accuplacer Advance Algebra score of 275-289 and Quantitative

Reason Score of 285+

4. Corequisites: None

5. MnTC Goals: Goal #3 Natural Science

This is the first semester of a two-semester sequence of non-calculus, introductory physics. This course uses algebra and trigonometry. Topics include kinematics, dynamics, gravitation, momentum, energy, heat, and fluids.

B. Date last reviewed/updated: October 2023

C. Outline of Major Content Areas:

- 1. Kinematics.
- 2. Dynamics.
- 3. Gravitation.
- 4. Momentum.
- 5. Energy.
- 6. Heat.
- 7. Fluids.

D. Course Learning Outcomes:

Upon successful completion of the course, the student will be able to:

- 1. Demonstrate an understanding of scientific theories and principles by: (Goal 2a, 2b, 2c, 3a)
 - a. Stating and applying the fundamental laws and concepts relating to the course topics.
 - b. Identifying which physical laws and principles are appropriate for the solution of physics problems relating to various applications.

- c. Using the appropriate physical laws and principles and College Algebra concepts and techniques to develop the mathematical expressions required to solve physics problems; solving those mathematical expressions.
- d. Using the terminology of physics correctly.
- 2. Formulate and test hypotheses by: (Goal 2a, 2b, 2c, 3b)
 - a. Performing laboratory, simulation, or field experiments.
 - b. Collecting data and analyzing it statistically and graphically.
 - c. Identifying sources of error and uncertainty.
 - d. Estimating the magnitude of error and uncertainty in data.
 - e. Using appropriate software to perform experiments and analyze data.
- 3. Communicate experimental findings, analysis, and interpretations by: (Goal 2a, 2b, 2c, 3c)
 - a. Presenting laboratory results orally.
 - b. Orally explaining analysis and interpretations of laboratory results and relating the results to physics concepts and theories.
 - c. Presenting written reports that interpret laboratory results and relate them to physics concepts and theories.

E. Methods for Assessing Student Learning:

Methods for assessment may include, but are not limited to, the following:

- 1. Written and/or oral reports
- 2. Homework
- 3. Projects
- 4. Quizzes
- 5. Exams
- 6. Final Exam

F. Special Information:

Basic geometry, the Pythagorean Theorem, and right triangle trigonometry are reviewed and used in this course. This course is not recommended for pre-engineering, math, computer science, or physical science majors.